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A New Statistical Method for Haplotype Reconstruction
from Population Data
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Current routine genotyping methods typically do not provide haplotype information, which is essential for many
analyses of fine-scale molecular-genetics data. Haplotypes can be obtained, at considerable cost, experimentally or
(partially) through genotyping of additional family members. Alternatively, a statistical method can be used to infer
phase and to reconstruct haplotypes. We present a new statistical method, applicable to genotype data at linked
loci from a population sample, that improves substantially on current algorithms; often, error rates are reduced
by 150%, relative to its nearest competitor. Furthermore, our algorithm performs well in absolute terms, suggesting
that reconstructing haplotypes experimentally or by genotyping additional family members may be an inefficient
use of resources.

Introduction

Haplotype information is an essential ingredient in many
analyses of fine-scale molecular-genetics data—for ex-
ample, in disease mapping (e.g., Risch and Merikangas
1996; Hodge et al. 1999; Rieder et al. 1999), or inferring
population histories (e.g., Harding et al. 1997). Our fo-
cus here is population data, for which routine genotyp-
ing methods typically do not provide phase information.
This can be obtained, at considerable cost, experimen-
tally, or (partially) through genotyping of additional
family members (e.g., Sobel and Lange 1996). Alter-
natively, a statistical method can be used to infer phase
at linked loci from genotypes and thus reconstruct hap-
lotypes. The two most popular existing methods are
maximum likelihood, implemented via the expectation-
maximization (EM) algorithm (Excoffier and Slatkin
1995; Hawley and Kidd 1995; Long et al. 1995), and
a parsimony method created by Clark (1990). We pre-
sent a new statistical method that improves on these by
exploiting ideas from population genetics and coalescent
theory that make predictions about the patterns of hap-
lotypes to be expected in natural populations. Our
method is Bayesian, allowing us to use these a priori
expectations to inform haplotype reconstruction. Our
method outperforms and is more widely applicable than
existing algorithms; often, it reduces error rates by 150%
relative to its nearest competitor. A novel feature is that

Received October 19, 2000; accepted for publication February 9,
2001; electronically published March 9, 2001.

Address for correspondence and reprints: Dr. Matthew Stephens,
Department of Statistics, University of Washington, Box 354322, Se-
attle, WA 98195-4322. E-mail: stephens@stat.washington.edu

� 2001 by The American Society of Human Genetics. All rights reserved.
0002-9297/2001/6804-0020$02.00

it also estimates the uncertainty associated with each
phase call. This avoids inappropriate overconfidence in
statistically reconstructed haplotypes, and—crucially—it
allows subsequent experimental phase confirmation to
be targeted effectively. Our results suggest that, in many
cases, our statistical method is sufficiently accurate that
reconstructing haplotypes experimentally, or by geno-
typing additional family members, may be an inefficient
use of resources.

Statistical Methods of Haplotype Reconstruction

Suppose we have a sample of n diploid individuals from
a population. Let denote the (known)G p (G , … ,G )1 n

genotypes for the individuals, let de-H p (H , … ,H )1 n

note the (unknown) corresponding haplotype pairs, let
denote the set of (unknown) populationF p (F , … ,F )1 M

haplotype frequencies, and let denote thef p (f , … ,f )1 M

set of (unknown) sample haplotype frequencies (the M
possible haplotypes are arbitrarily labeled ).1, … ,M

EM Algorithm

The EM algorithm (see, e.g., Excoffier and Slatkin
1995; Hawley and Kidd 1995; Long et al. 1995) is a
way of attempting to find the F that maximizes the
likelihood

n

L(F) p Pr (G d F) p � Pr (G d F) .i
ip1

Here,

Pr (G d F) p F F ,�i h h1 2
(h ,h )�H1 2 i
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where is the set of all (ordered) haplotype pairs con-Hi

sistent with the multilocus genotype . Note that thisGi

likelihood is just the probability of observing the sample
genotypes, as a function of the population haplotype
frequencies, under the assumption of Hardy–Weinberg
equilibrium (HWE).

We implemented the EM algorithm to obtain an esti-
mate for the population haplotype frequencies F, asEMF̂
described by Excoffier and Slatkin (1995). We used this
as an estimate for the sample haplotype frequenciesˆEMf
f (that is, we used ). Since the estimate foundˆEM EMˆf p F
by the EM algorithm typically depends on the starting
point, for each data set we applied the algorithm using
100 different starting points and took the estimate of F
that gave the highest likelihood. Following Excoffier and
Slatkin (1995), the first starting point was computed by
finding all haplotypes that could occur in the sample,
given the genotypes, and setting each of these haplotypes
to have equal frequency. (We found it helpful to add a
small random perturbation to each frequency, to avoid
the algorithm’s converging to a saddle point in the like-
lihood.) Each of the 99 other starting points was obtained
by randomly sampling the frequencies of all possible hap-
lotypes from a (multivariate) uniform distribution.

Although, in theory, the EM algorithm can be applied
to any number of loci with any number of alleles, in
practice, implementations are limited by the need to
store estimated haplotype frequencies for every possible
haplotype in the sample. These storage requirements in-
crease exponentially with the number of loci; for ex-
ample, if any of the individuals is heterozygous at � k
loci, then the number of possible haplotypes in the sam-
ple is . In our implementation, we imposed ank�1� 2
arbitrary limit of on the number of possible hap-510
lotypes and did not apply the algorithm to data sets that
exceeded this limit.

Within the maximum-likelihood framework, it is not
clear how best to reconstruct the haplotypes themselves.
We take perhaps the most natural and common approach,
reconstructing haplotypes by choosing to maximizeEMĤ

—that is, by choosing the most probableEMˆPr (H dF ,G)
haplotype assignment, given the genotype data and the
estimated population haplotype frequencies .EMF̂

Clark’s Algorithm

Clark’s algorithm (1990) can be viewed as an attempt
to minimize the total number of haplotypes observed in
the sample and, hence, as a sort of parsimony approach.
The algorithm begins by listing all haplotypes that must
be present unambiguously in the sample. This list comes
from those individuals whose haplotypes are unambigu-
ous from their genotypes—that is, those individuals who
are homozygous at every locus or are heterozygous at
only one locus. If no such individuals exist, then the al-

gorithm cannot start (at least, not without extra infor-
mation or manual intervention). Once this list of
“known” haplotypes has been constructed, the haploty-
pes on this list are considered one at a time, to see whether
any of the unresolved genotypes can be resolved into a
“known” haplotype plus a complementary haplotype.
Such a genotype is considered resolved, and the comple-
mentary haplotype is added to the list of “known” hap-
lotypes. The algorithm continues cycling through the list
until all genotypes are resolved or no further genotypes
can be resolved in this way. The solution obtained can
(and often does) depend on the order in which the gen-
otypes are entered. In our comparisons, we entered the
genotypes once, in a random order, and ignored cases in
which the algorithm could not start or completely resolve
all genotypes. A program, HAPINFERX, implementing
the algorithm was kindly provided by A. G. Clark. When
it successfully resolves all genotypes, Clark’s algorithm
results in an estimate, , of H. We estimated sampleCĤ
haplotype frequencies f by the frequencies of the haplo-
types reconstructed by the algorithm.

Our Phase Reconstruction Method

Our phase reconstruction method regards the unknown
haplotypes as unobserved random quantities and aims to
evaluate their conditional distribution in light of the ge-
notype data. To do this, we use Gibbs sampling, a type
of Markov chain–Monte Carlo (MCMC) algorithm (see
Gilks et al. [1996] for background), to obtain an ap-
proximate sample from the posterior distribution of H
given G, . Informally, the algorithm starts withPr (H dG)
an initial guess for H, repeatedly chooses an individ-(0)H
ual at random, and estimates that individual’s haplotypes
under the assumption that all the other haplotypes are
correctly reconstructed. Repeating this process enough
times results in an approximate sample from .Pr (H dG)
Formally, our method involves constructing a Markov
chain , with stationary distribution(0) (1) (2)H ,H ,H , …

, on the space of possible haplotype reconstruc-Pr (H dG)
tions, using an algorithm of the following form.

ALGORITHM 1. Start with some initial haplotype re-
construction . For , obtain from(0) (t�1)H t p 0,1,2, … H

using the following three steps:(t)H

1. Choose an individual, i, uniformly and at random
from all ambiguous individuals (i.e., individuals with
more than one possible haplotype reconstruction).

2. Sample from , where is the(t�1) (t)H Pr (H d G,H ) Hi i �i �i

set of haplotypes excluding individual i.
3. Set for , .(t�1) (t)H p H j p 1, … ,n j ( ij j

That this produces a Markov chain with the required
stationary distribution follows from the proof for a gen-
eral Gibbs sampler (see, e.g., Gilks et al. [1996]).

The difficulty in implementing the above algorithm
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Figure 1 Illustration of how our method uses the fact that un-
resolved haplotypes tend to be similar to known haplotypes. Suppose
that we have a list of haplotypes, as shown on the left side of the
figure, that are known without error (e.g., from family data or because
some individuals are homozygous). Then, intuitively, the most likely
pair of haplotypes for ambiguous individual 1 consists of two hap-
lotypes that have high population frequency, as shown. All methods
considered here will correctly identify this as the most likely recon-
struction. However, ambiguous individual 2 cannot possess any of the
haplotypes in the known list, and the most plausible reconstruction
for this individual consists of two haplotypes that are similar, but not
identical, to two haplotypes that have high population frequency, as
shown. Of the methods considered here, only our method uses this
kind of information, leading to the improved performance we
observed.

lies in step 2. Not only does the conditional distribution
, which we are required to sample from,Pr (H d G,H )i �i

depend on assumptions about the genetic and demo-
graphic models (or, equivalently, on a “prior” for the
population haplotype frequencies F), but this distribu-
tion is not even known for most models (or priors) of
interest. Nonetheless, it turns out to be helpful to rewrite
the conditional distribution as follows.

For any haplotype pair consistent withH p (h ,h )i i1 i2

genotypes , we haveGi

Pr (H d G,H ) ∝ Pr (H d H )i �i i �i

∝ p(h d H )p(h d H ,h ) , (1)i1 �i i2 �i i1

where is the conditional distribution of a future-p(7 d H)
sampled haplotype, given a set H of previously sampled
haplotypes. This conditional distribution is also not
known in general. However, it is known in the particular
case of parent-independent mutation, in which the type
of a mutant offspring is independent of the type of the
parent. Although this model is unrealistic for the kinds
of systems in which we are interested (e.g., DNA se-
quence, multilocus microsatellite, and single-nucleotide
polymorphism [SNP] data), it leads to a simple algorithm
(see Appendix A) whose performance is roughly com-
parable to the EM algorithm (data not shown) and has
at least two advantages over EM: it can be applied to
very large numbers of loci, and it naturally captures the
uncertainty associated with haplotype reconstructions.
This simple algorithm also provides a convenient way
of determining a good starting point for the improved
algorithm that we now describe.

Our improved algorithm arises from making more re-
alistic assumptions about the form of the conditional dis-
tribution . Although, for most mutation or dem-p(7 dH)
ographic models, the conditional distribution isp(7 dH)
unknown, Stephens and Donnelly (2000) suggest an ap-
proximation (their definition 1). Formally, for a general
mutation model with types in the countable set E, and
(reversible) mutation matrix P, the approximation is

s
� r v ra sp(h d H) p (P ) , (2)�� ah( )r r � v r � va�E sp0

where is the number of haplotypes of type a in thera
set H, r is the total number of haplotypes in H, and v

is a scaled mutation rate. Informally, this corresponds
to the next sampled haplotype, h, being obtained by
applying a random number of mutations, s, to a ran-
domly chosen existing haplotype, a, whereas s is sam-
pled from a geometric distribution. The approximation
(2) arose from consideration of the distribution of the
genealogy relating randomly sampled individuals, as de-
scribed by the coalescent (see Hudson [1991] for a re-

view), and of what that distribution predicts about how
similar a future-sampled chromosome and a previously
sampled chromosome are likely to be. In particular, fu-
ture-sampled chromosomes will tend to be more similar
to previously sampled chromosomes as the sample size
r increases and as the mutation rate v decreases. See
Stephens and Donnelly [2000] for further theoretical and
empirical evidence that the approximation is sensible.

The key to the increased accuracy of our algorithm is
that the approximation (2) captures the idea that the next
haplotype is likely to look either exactly the same as or
similar to a haplotype that has already been observed; see
Figure 1 for illustration. Our new statistical method for
haplotype reconstruction is based on substituting (2) into
(1) to implement Step 2 of the Gibbs sampler. There are
several other minor issues, both technical and practical
(including, for example, how to estimate v); details of
these are given in Appendix B.

For each run of our algorithm, we applied R successive
update steps to obtain haplotype reconstructions

, discarded the first b values of H as burn-in,(1) (R)H , … ,H
and thinned the remainder by storing the result every k
iterations. For the simulation studies, where we applied
the method to many data sets, we used relatively small
values of R and b to keep the computational burden man-
ageable: . For theR p 200,000, b p 100,000, k p 100
examples we looked at, much shorter runs produced sim-
ilar average performance (data not shown), but for more
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Table 1

Comparison of Accuracy of Our Method and Clark’s Method for
Long-Sequence Data (∼60–100 Segregating Sites)

Method Mean Error Rate Standard Error

Clark’s .42 .03
Ours .20 .02

NOTE.—Error rate is defined in the text. Results are averages over
15 simulated data sets, each of individuals, simulated withn p 50

and , where is the effective pop-v p 4N m p 16 R p 4N r p 16 Ne e e

ulation size, m is the total per-generation mutation rate across the
region sequenced, and r is the length, in Morgans, of the region se-
quenced. We simulated 20 independent data sets for a constant-sized
panmictic population under the infinite-sites model, with recombina-
tion, using a coalescent-based program kindly provided by R. R. Hud-
son. Each simulated data set consisted of 100 haplotypes randomly
paired to form 50 genotypes. Clark’s algorithm produced a unique
haplotype reconstruction for 15 of these, and we discarded the other
5. The simulated data sets contained ∼60–100 segregating sites; for
comparison, recent studies report 78 segregating sites in a 9.7-kb re-
gion (Nickerson et al. 1998) and 88 segregating sites in a 24-kb region
(Rieder et al. 1999). Implementations of the EM algorithm typically
cannot cope with these kinds of data, as the number of possible hap-
lotypes is too large.

complex problems larger values may be necessary to ob-
tain reliable results. We estimate f by the mean of the
empirical haplotype frequencies in the thinned sample and
use methods outlined in Appendix B to obtain a single
point estimate, , of H, together with estimates ofSSDĤ

, where denotes the probability that the phaseQ p (q ) qij ij

call for individual i at locus j is correct. Software imple-
menting our method will be made available at the Oxford
Mathematical Genetics Group Web site.

Results

To compare the performance of the statistical methods
of haplotype reconstruction, we simulated various types
of DNA sequence and tightly linked multilocus micro-
satellite data with known phase. (The details of how
these data were simulated are given in the relevant figure
captions.) We randomly paired simulated haplotypes
and compared the methods on their ability to reconstruct
these haplotypes from the resulting genotype data, in
which phase information is ignored. There are many
possible aims for statistical methods of haplotype re-
construction. We concentrate on two particular tasks:

I. Reconstruction of the haplotypes of sampled indi-
viduals, which is the main focus of Clark (1990).

II. Estimation of sample haplotype frequencies, which
is the main focus of Excoffier and Slatkin (1995).

For (I), we measure performance by the error rate,
being the proportion of individuals with ambiguous
phase whose haplotypes are incorrectly inferred. For
(II), we use the discrepancy between the estimated and
true sample haplotype frequencies:

1ˆ ˆD(f; f ) p Ff � fF , (3)� j j2 j

with summation over all possible haplotypes, where f̂j

and denote, respectively, the estimated and true samplefj

frequency of the jth haplotype. The discrepancy is equiv-
alent to the score used by Excoffier and Slatkin (1995):If

.D p 1 � If

The results of our comparisons, shown in table 1 and
figures 2 and 3, demonstrate that the accuracy of our
new method substantially improves on both the EM
algorithm and Clark’s method, with mean error rates
often reduced by 150%. Not only is our average per-
formance improved, but this improvement is achieved
by a consistent improvement across many data sets,
rather than an extreme improvement in a minority of
cases. For example, figure 4 shows that, for the simu-
lated microsatellite data sets with and ,n p 50 R p 4
the EM algorithm gave a smaller error rate than our
method for only 3 data sets out of 100.

An important and novel feature of our method is that

it quantifies the uncertainty in its phase calls by out-
putting an estimate of the probability that each call is
correct. Table 2 shows the method to be well calibrated,
in that, on average, phases called with x% certainty are
correct ∼x% of the time. This is another substantial
advantage of our method, and, in this sense, the per-
formance improvements illustrated in figures 2 and 3
and table 1 underrepresent the gains achieved.

We assessed the effect on our method of departures
from HWE in data. Published haplotype data from a
world sample (Harding et al. 1997) were randomly com-
bined in pairs, first under HWE and then in a way that
respected geographical structure. Table 3 shows that
these departures from HWE have little effect. The type
of geographical structure we modeled will tend to in-
crease the amount of homozygosity in the sample, which,
as pointed out by Fallin and Schork (2000), tends to
reduce the number of ambiguous individuals. Deviations
from HWE in the other direction (an increased propor-
tion of heterozygotes) will tend to make things more
difficult for all haplotype-reconstruction methods.

Discussion

Haplotypes are the raw material of many genetic anal-
yses, but the rapid growth of high-throughput genotyp-
ing techniques has not been matched by similar advances
in cheap experimental haplotype determination. We
have introduced a new statistical method for haplotype
reconstruction that has three major advantages over ex-
isting statistical methods: increased accuracy, wider ap-
plicability, and the facility to assess accurately the un-
certainty associated with each phase call.
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Figure 2 Comparison of accuracy of our method (solid line) versus EM (dotted line) and Clark’s method (dashed line) for short sequence
data (∼5–30 segregating sites). Top row, mean error rate (defined in text) for haplotype reconstruction. Bottom row, mean discrepancy (defined
in text) for estimation of haplotype frequencies. We simulated data sets of haplotypes, randomly paired to form n genotypes, under an2n
infinite-sites model, with and different assumptions about the local recombination rate R (R and v are defined in the note to table 1),v p 4
using a coalescent-based program kindly provided by R. R. Hudson. For each combination of parameters considered, we generated 100
independent data sets and discarded those data sets for which the total number of possible haplotypes was 1105 (the limit of our implementation
of the EM algorithm), which typically left 190 data sets on which to compare the methods. Each point thus represents an average over 90–100
simulated data sets. Horizontal lines above and below each point show approximate 95% confidence intervals for this average ( standard�2
errors). The results for Clark’s algorithm for are omitted, as we had difficulty getting the algorithm to consistently provide a uniqueR p 40
haplotype reconstruction for these data.

The key to our increased accuracy is the use, in ad-
dition to the likelihood, of the fact that, a priori, unre-
solved haplotypes tend to be similar to known haplotypes
(see fig. 1). The particular quantitative way in which we
capture this prior expectation is motivated by coalescent
theory. It amounts to specifying a statistical model (or,
depending on your philosophy, a “prior”) for the pop-
ulation-genetics aspect of the problem—namely, the re-
sults of the evolutionary process that generated the hap-
lotypes in the first place. Of course, we would expect the
method to perform well if this is exactly the model that
is generating the data, but, for real data, this will never
be the case. Thus, what matters, in practice, is whether

the model used and the implicit prior it induces on hap-
lotype structure do a reasonable job of capturing im-
portant features of the haplotype structure in real data.
If so, then we would expect the method to perform well
and to outperform methods (including those to which it
is compared here) that do not model the haplotype struc-
ture in the population.

Unfortunately, there simply do not exist enough real
data sets, with known haplotypes for sequence or
closely linked markers, to allow sensible statistical com-
parisons of different methods. However, coalescent
methods have proved useful for a wide range of mo-
lecular-genetics data, and so it seems reasonable, a
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Figure 3 Comparison of accuracy of our method (solid line) versus EM (dotted line) for microsatellite data. Top row, mean error rate
(defined in text) for haplotype reconstruction. Bottom row, mean discrepancy (defined in text) for estimation of haplotype frequencies. We
simulated data sets of haplotypes, randomly paired to form n genotypes, for 10 equally spaced linked microsatellite loci, from a constant-2n
sized population, under a symmetric stepwise mutation model, using a coalescent-based program kindly provided by P. N. Fearnhead. We
assumed (where m is the per-generation mutation rate per locus, assumed to be constant across loci) and various values for thev p 4N m p 8e

scaled recombination rate between neighboring loci, , where is the effective population size and r is the genetic distance, in Morgans,R p 4N r Ne e

between loci. For example, for humans, assuming , and the genomewide average recombination rate, 1 cM p 1 Mb, the right-hand4N p 10e

column would correspond to 10 kb between loci. For each combination of parameters considered, we generated 100 independent data sets.
Each point thus represents an average over 100 simulated data sets. Horizontal lines above and below each point show approximate 95%
confidence intervals for this average ( standard errors). We had difficulty getting Clark’s algorithm to consistently provide a unique haplotype�2
reconstruction for these data.

priori, to expect their use here to helpfully capture some
of the key population genetics aspects of real data. Fur-
ther, our simulation results provide evidence that the
performance of our method is relatively robust to de-
viations in data from our underlying modeling assump-
tions. We note in particular that (1) the data underlying
table 1 and figure 1 were simulated under a mutation
model different from that used to derive the prior in
our method; (2) the majority of data sets were simulated
with recombination, which is not included in our model;
and (3) in none of the tests of our method did we use
the actual parameter values under which data were gen-

erated (as described in Appendix B, these were estimated
within the method via simple summary statistics). De-
spite these deviations from our model, our method per-
formed well. Thus, although our method makes more-
explicit assumptions than the other methods we
consider, it would be a mistake to conclude that it re-
quires all these assumptions to hold to provide a useful
improvement in performance. (It is, however, true that,
in analysis of some real microsatellite data, it may be
prudent to drop the assumption of a strict stepwise mu-
tation mechanism; this option will be implemented in
our software.)
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Figure 4 Graph of error rates using our method (solid line) and
the EM algorithm (dotted line) for each of the 100 simulated micro-
satellite data sets with and . The EM algorithm gives an p 50 R p 4
smaller error rate than our method for only 3 of the 100 data sets.

Table 2

Results of Calibration Tests

DATA TYPE

ESTIMATED PROBABILITY OF CORRECT CALL

.5–.6 .6–.7 .7 –.8 .8 –.9 .9–1.0

Long sequence .59 .82 .82 .82 .99
Short sequence:

R p 0 .58 .82 .87 .89 .95
R p 4 .60 .86 .88 .90 .98
R p 40 .62 .72 .77 .84 .96

Microsatellite:
R p 0 .60 .73 .81 .87 .99
R p 2 .60 .69 .78 .86 .98
R p 4 .60 .70 .76 .83 .97

NOTE.—Table entries show, for the simulated data sets used for
table 1 and figures 2 and 3, proportion of all phase calls at ambiguous
loci or sites, made with a given degree of confidence, that were actually
correct. We regard the phase call in individual i at locus j as incorrect
if the alternative call would give strictly fewer differences between the
true and estimated haplotypes; otherwise, we regard the call as correct.
Formally, the entries in each row of the table show #{(i,j):x% !

Phase call for individual i at locus j is correct}q � (x � 10)% ∩ij

, for , where de-/#{(i,j):x% ! q � (x � 10)%} x p 50,60,70,80,90 #Aij

notes the number of members of the set A. The results suggest that
our method tends, on average, to be slightly conservative in its estimate
of the probability of having made a correct call.

In addition to the modeling assumptions that underlie
our method, the likelihood used here and by the EM
algorithm assumes HWE. Fallin and Schork (2000) pro-
vide a good discussion of the general consequences of
departures from HWE in data and show that the EM
algorithm can still give good results when HWE is not
strictly satisfied. Our own results, shown in table 2,
suggest that geographical structure of the sort plausible
for human populations does not affect the average ac-
curacy of our method. In light of this, it would be a
misunderstanding to assume that either method “relies”
on HWE for its validity; both methods are better
thought of as “black box” estimation methods, and it
is appropriate to assess their performance for data gen-
erated under a range of scenarios, as we have here.

Our method is also directly applicable to SNP data. In
fact, the final column of figure 2 corresponds to SNP data
(10–30 SNPs over 100 kb, under the assumption that 1
cM p 1 Mb) in which ascertainment of SNPs is inde-
pendent of their sample frequencies. Performance is en-
couraging. This ascertainment assumption will not be
valid for many real data sets. Although different studies
use different ascertainment strategies, most of these strat-
egies tend to preferentially select SNPs with higher fre-
quencies. Higher-frequency variants produce, on average,
a larger total number of ambiguous phases (through
greater heterozygosity), but these phases are typically eas-
ier to estimate statistically than are those of lower-fre-
quency variants (e.g., there is no information about phase
for variants that appear only once in the sample). For
these reasons, we would expect that—although our
method, when applied to real SNP data, would typically

give more incorrect phase calls (in absolute terms) than
it would when applied to the corresponding SNP data
that we simulated without taking ascertainment into ac-
count—a higher proportion of ambiguous phases would
be called correctly with the real data.

Our method does not use information about genetic
distances between loci or sites and is best suited to cases
where the loci are tightly linked. Nonetheless, our sim-
ulation results show that it continues to perform well
in the presence of moderate amounts of recombination
(loci or segregating sites spread over ∼100 kb in hu-
mans, provided there are no recombination hotspots in
the region). Our method could be extended to deal with
loci or sites spread over larger genetic distances by re-
placement of the approximation (2) with an approxi-
mation that takes genetic distance between loci into ac-
count (e.g., the approximation used by Fearnhead and
Donnelly [available online]).

As well as being more accurate, our method is also
more widely applicable than other available methods.
Existing implementations of the EM algorithm are lim-
ited in the size of problem they can tackle. For example,
they are typically impracticable for sequence data con-
taining individuals whose phase is ambiguous at more
than ∼30 sites. Similarly, they cannot cope with large
numbers of linked SNPs. Clark’s algorithm can deal
with very long sequences (or large numbers of SNPs)
but may fail either to start or to resolve all genotypes
completely. These problems with Clark’s algorithm
arose in many of the settings we examined. In contrast,



Stephens et al.: Statistical Haplotype Reconstruction 985

Table 3

Illustration of Effect on Our Method of Deviations from HWE in
Data

Data Set Mean Error Rate Mean Discrepancy

HW .21 (.006) .16 (.002)
NHW .21 (.008) .16 (.004)

NOTE.—Results are averages over 20 simulated data sets, with stan-
dard errors for this average in parentheses. Data set HW was formed
under HWE, and NHW was formed under an assumption of geo-
graphical structure (see below). The results suggest that deviations
from HWE have little effect on our method’s average performance
(though the performance is slightly more variable). To create the data
sets HW and NHW, we used published, experimentally determined
haplotype data from a 3-kb region of the beta-globin gene, sequenced
in 253 chromosomes (appendix A of Harding et al. 1997), kindly
provided electronically by R. M. Harding. Six subpopulations were
represented in the sample: Vanuatu, Papua New Guinea, Sumatra, the
Gambia, the United Kingdom, and the Nuu-Chah-Nulth. We used
these data to create HW and NHW by repeating the following pro-
cedure 20 times: (a) remove one chromosome at random from each
subpopulation with an odd number of chromosomes in the sample,
leaving 250 haplotypes, and (b) form 125 genotypes, by (i) (for HW)
randomly pairing all haplotypes or (ii) (for NHW) randomly pairing
haplotypes within each subpopulation.

our method suffers from neither limitation, although
the running time required will increase with the size and
complexity of the problem. For the simulated data sets
we considered, the running time for our method ranged
from a few minutes to a few hours (on a PC with a
500-MHz processor), whereas the EM algorithm and
Clark’s method typically took only seconds for those
problems to which they could be applied successfully.
However, since the cost of a few hours of calculation
on a computer is small, relative to the costs of data
collection and experimental haplotype reconstruction,
we argue that this kind of difference in speed is not a
particularly important consideration in this context. It
is difficult to make general statements about the max-
imum size of problem that our method might reasonably
be expected to tackle, but we believe that, given rea-
sonably modern computing resources, our method
should be practicable for hundreds of individuals typed
at �100 sites.

An important and novel feature of our method is that
it provides estimates of the uncertainty associated with
each phase call. Quantification of uncertainty is, of
course, good practice in any statistical estimation pro-
cedure. Formally, our method provides a sample from a
distribution over possible haplotype reconstructions. Al-
though it might be tempting to hope that one could sum-
marize the posterior distribution by a few most-common
configurations, in the cases we have looked at, the sup-
port is typically spread rather thinly over an enormous
number of possible haplotype configurations. We there-
fore chose to summarize the posterior distribution by a
single “best” phase call at each position and an estimate

of the marginal probability that each phase call is correct.
In practice, this risks discarding some of the information
in the posterior distribution, particularly complex de-
pendencies between the phase calls at different positions
both within and between individuals. Nonetheless, we
believe our summary to be a helpful way of visualizing
the full joint distribution over possible haplotype recon-
structions. Development of more-sophisticated ways to
summarize complex high-dimensional posterior distri-
butions provides a challenging problem for the future,
both here and in other contexts.

Unless haplotype reconstruction is an end in itself, it
is natural to make use of a sample from the posterior
distribution of haplotype reconstructions in subsequent
analyses. Any statistical procedure that uses haplotype
data can easily be applied independently to several sam-
pled haplotype reconstructions. For certain inference
problems—particularly those using Bayesian methods,
which provide posterior distributions over parameters
of interest—uncertainty in the haplotype reconstruction
can then be taken into account by averaging results of
the independent analyses. However, in many inference
problems (e.g., estimation of recombination rates), it
would be preferable to develop a method of jointly in-
ferring haplotypes and parameters of interest, and, in
other settings, (e.g., significance testing) the best way to
combine the results of independent analyses is far from
clear (see the literature on multiple imputation—e.g.,
the work of Little and Rubin [1987]). As a practical
general solution, we suggest performance of indepen-
dent analyses using 10 sampled haplotype reconstruc-
tions to investigate the robustness of conclusions to in-
ferred haplotypes. If conclusions differ among the 10
analyses, then experimental methods for haplotype re-
construction may be required to confirm findings.

Statistical methods can be used in conjunction with
experimental methods to provide more-accurate esti-
mates of individual haplotypes. Although we have treated
Clark’s algorithm as an automatic method for haplotype
reconstruction (as did Clark [1990]), in published ap-
plications (e.g., Nickerson et al. 1998; Rieder et al. 1999),
it has often been used as an exploratory tool to suggest
putative haplotype reconstructions, which could then be
confirmed by allele-specific PCR. This seems a powerful
approach, and our method can also be used in this way.
The ability of our method to accurately assess the un-
certainty associated with the phase call at each individual
site (or locus) gives it the substantial practical advantage
of allowing experimental effort to be directed at sites or
loci whose phases are most difficult to reconstruct sta-
tistically. Our software can use experimentally verified
phase information (either for complete individuals or for
specific sites or loci) in estimation of the unknown hap-
lotypes, and this will usually produce a substantial further
reduction in error rate.
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The availability of family data can also improve sta-
tistical estimation of haplotypes. In the case where tri-
ples of mother, father, and child have been collected,
the child’s genotype information can be used to infer
the parental haplotypes at many loci or sites (e.g., Ex-
coffier and Slatkin 1998, Hodge et al. 1999), and (pro-
vided that the genetic distance across the region is not
too large) our method can then use this known phase
information in estimation of the remaining ambiguous
phases. The accuracy of our method in simulation stud-
ies suggests that the pessimistic conclusions of Hodge
et al. (1999) for markers in linkage equilibrium will not
apply to markers in disequilibrium. For data from ex-
tended pedigrees, the situation is often more complex.
Current methods of haplotype reconstruction in pedi-
grees (e.g., Sobel and Lange 1996) ignore population-
genetics considerations and rely on information in trans-
mission events to infer haplotypic phase. These trans-
mission events carry information on haplotypes over
much larger genetic distances than we consider here,
and pedigree methods can thus be effective even for
widely spaced markers. However, the use of ideas from
population genetics to model founder haplotypes in
such pedigrees could lead to worthwhile performance
improvements, particularly as denser maps of markers
become available.

Fallin and Schork (2000) have recently published a
simulation study to assess the performance of the EM
algorithm for reconstructing phase from genotype data
at linked biallelic loci. Their general conclusion is that
the performance of the EM algorithm is good. The most
substantial difference between our simulation study and
theirs is that we have considered rather “larger” prob-
lems. Fallin and Schork (2000) considered five linked
biallelic loci. We have considered long sequence data
(60–100 segregating sites; table 1), short-sequence data
(5–30 segregating sites; fig. 2), and 10 linked micro-
satellite loci (fig. 3). Haplotype reconstruction is much
harder for these larger (but realistic) problems, and we
believe that the improvement made by our method over
EM is practically important.

A more technical, less substantial methodological dif-
ference between the approaches is that we assessed ac-
curacy of haplotype sample frequency estimates using
the discrepancy (effectively following Excoffier and Slat-
kin [1995]), whereas Fallin and Schork (2000) use the
mean squared error (MSE). Use of MSE to measure
accuracy of haplotype sample frequency estimates gives
results that seem to favor our method more strongly
than use of the discrepancy (data not shown).

A common and important problem with MCMC al-
gorithms is knowing how long one needs to run the
algorithm to obtain reliable results. (Often, this problem
is referred to in terms of diagnosing “convergence” of
the Markov chain.) Checking (and, indeed, attaining)

convergence is, in general, notoriously difficult, so it is
important to note that our algorithm does not neces-
sarily need to “converge” in order to improve on the
accuracy of other methods. In particular, the results of
our simulation experiments did not rely on checking
convergence of the algorithm and so provide direct ev-
idence that, for the size of problem we considered, the
runs were sufficiently long to give a substantial average
gain in accuracy over other methods, regardless of
whether the Markov chain had actually “converged” in
each instance. Nonetheless, it is helpful to be aware of
potential problems caused by lack of convergence. The
main danger is that the algorithm could get “stuck” in
a local mode of the posterior distribution of haplotype
reconstructions and fail to find other, perhaps more
strongly supported, modes. Depending on the severity
of the problem, this kind of behavior can be difficult to
identify on the basis of a single run of the algorithm,
since this run could remain stuck in a single local mode
for a very long time and give no clue that other modes
exist. We therefore prefer to investigate convergence us-
ing multiple runs of the algorithm, with different initial
values for the seed of the random-number generator (an
approach suggested by Gelman and Rubin [1992]). If
the algorithm tends to get stuck in local modes, then
these different runs may give qualitatively quite different
results, effectively diagnosing the problem. (Although
more-formal approaches are possible, most are based
on diagnosing convergence for a small set of continuous
parameters, which is not the situation here.) Where pos-
sible, the length of the runs should be increased until
they all give qualitatively similar results. If this proves
impractical, then further experimental investigation
may be necessary to decide between competing haplo-
type reconstructions.

Our method could usefully be extended to allow it
to deal with missing genotype data in some individuals
at some loci. This is straightforward in principle, by the
usual trick of augmenting the space that the MCMC
scheme explores to include the missing data. Similarly,
the method could be extended to allow for the possi-
bility of genotyping error. For realistic amounts of miss-
ing data and realistic probabilities of genotyping error,
these extensions seem unlikely to greatly increase the
computational time our method requires. (Indeed, in-
corporation of the possibility of genotyping error may
even provide a way to improve the mixing of the
MCMC scheme, as it will tend to flatten out modes in
the posterior distribution.)

An alternative approach to the whole problem would
be to assume more-explicit models for mutation, re-
combination, and population demography and to
jointly estimate haplotypes with the parameters of these
models. Kuhner and Felsenstein (2000) describe an
MCMC scheme that could be used to do this, although
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their primary focus is estimation of parameters, rather
than reconstruction of haplotypes. Their MCMC
scheme makes explicit use of the genetic distance be-
tween markers and is a modified version of the scheme
for known haplotypes described by Kuhner et al.
(2000). However, because of its computational com-
plexity, this scheme is currently practical only for very
small genetic distances (see Kuhner and Felsenstein
2000; Kuhner et al. 2000; Fearnhead and Donnelly
[available online]) and so (we believe) could not usefully
be applied to most of the data sets we consider here.

In conclusion, we note that, for many of the data sets
we considered, our new statistical method succeeded in
correctly reconstructing the haplotypes of �80% of the
sample. Although explicit conclusions will depend on
power calculations for specific analyses, the accuracy of
our method suggests that, in many settings, the optimal

use of experimental resources will be to maximize the
number of unrelated individuals genotyped. In others,
it will be most efficient to target experimental effort on
those phase calls that are identified as having a moderate
probability of being wrong or that are critical to the
conclusions of the study.
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Appendix A

We consider here the “naive” version of the Gibbs sampler that arises from algorithm 1 if we assume that the
type of a mutant offspring is h with probability , independent of the type of the parent. In this case (for a constant-nh

sized panmictic population), the conditional distribution is known to bep(h d H)

p(h d H) p (r � vn )/(r � v) , (A1)h h

where is the number of haplotypes of type h in H, r is the total number of haplotypes in H, and v is a scaledrh

mutation rate (see Donnelly 1986).
In principle, we can substitute (A1) into (1) to calculate (up to a normalizing constant) for allPr (H d G,H )i �i

possible values of , and thus we can implement step 2 of algorithm 1. However, this is impractical if the numberHi

of possible values of is too large; if k denotes the number of loci at which individual i is heterozygous, thenHi

there are different possible values for , and if k is large, this causes problems. However, if we takek�12 H n pi h

for all h, where M is the total number of different possible haplotypes that could be observed in the population,1/M
then we can solve these problems by exploiting the fact that, for those haplotype reconstructions that do notHi

contain any of the haplotypes in , the probabilities are all equal. This leads to algorithm 2, below,H Pr (H d G,H )�i i �i

which is practical for large samples and large numbers of loci.
ALGORITHM 2. Starting with an initial guess H for the haplotype reconstructions of all individuals, make a list

consisting of the haplotypes present in H, together with counts of how many timesh p (h , … ,h ) r p (r , … ,r )1 m 1 m

each haplotype appears.

1. Pick an individual i uniformly at random, and remove his or her two current haplotypes from the list (h,r)
(so the list now contains the haplotypes in ). Let k be the number of loci at which i is heterozygous.H�i

2. Calculate a vector as follows. For , check whether the genotype could be madep p (p , … ,p ) j p 1, … ,m G1 m i

up of the haplotype plus a complementary haplotype, . If not, set ; if so, search for in the list′ ′h h p p 0 hj j

. If is in the list, , then set ; otherwise, set .′ ′ 2(h , … ,h ) h h p h p p (r � v/M)(r � v/M) � (v/M) p p r (v/M)1 m k j j k j j

3. With probability , reconstruct the haplotype for individual i completely at randomk 2 k 22 (v/M) /(� p � 2 (v/M) )j j

(i.e., by randomly choosing the phase at each heterozygous locus). Otherwise, reconstruct the haplotype for indi-
vidual i as plus the corresponding complementary haplotype, with probability .h p /� p′ ′j j j j

4. Add the reconstructed haplotype for individual i to the list .(h,r)

The accuracy of this algorithm is similar to that of the EM algorithm (data not shown). Note that the case
(for all h) corresponds to a uniform prior on the population allele frequencies F,, and that, under thisvn p 1h

uniform prior, the mode of the posterior distribution for F will be the same as the maximum-likelihood estimate
sought by the EM algorithm. This approach thus could be used to perform maximum-likelihood estimation in
problems that are too large for the EM algorithm.
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Appendix B

We consider here the more sophisticated Gibbs sampler that arises from using (2) and (1) to perform step 2 of
algorithm 1. (In fact, the algorithm we present is actually a “pseudo-Gibbs sampler,” in the sense of Heckerman
et al. 2000, because the conditional distributions from which we sample are approximations that do not correspond
to an explicit prior and likelihood.)

There are two main problems to be overcome here. First, for multilocus data, the expression (2) is not easy to
compute, because the matrix P has the same dimension as the number of possible haplotypes and, therefore, is
potentially huge. Stephens and Donnelly (2000) describe (in their appendix 1) how to approximate (2) using Gaussian
quadrature, and we make use of this approximation here. The approximation requires the specification of a mutation
mechanism and a scaled mutation rate, , at each locus or site. Note the contrast with the definition of v in (2),vj

which is the overall scaled mutation rate across sites or loci.
For the sequence data, we treated the polymorphic sites as linked biallelic loci, where a mutation at a locus causes

the allele at that locus to change, and where recurrent mutations are permitted. We ignored nonpolymorphic sites,
since these sites add no ambiguity to the haplotypes (and, in any case, the program we used to simulate the sequence
data outputs only the polymorphic sites). For our method, this is formally equivalent to setting at nonpoly-v p 0j

morphic sites. We set for each polymorphic site in the sample, where n is the number of diploidv p 1/ log (2n)j

individuals in the sample. This choice of gives, a priori, an expectation of approximately one mutation at eachvj

polymorphic site during the ancestry of the sample subsequent to its most recent common ancestor. It also corresponds
to an estimate, , for the total scaled mutation rate across the region, where S is the number of polymorphicv p S/ log (2n)
sites observed. This is, for moderate values of n, approximately Watterson’s estimate for v (Watterson 1977). To assess
sensitivity of our results to choice of v, we looked at other choices for at the polymorphic sites, in the rangev v pj j

, for a few of the data sets with . From our limited investigations, these values seemed to perform0.1 � 1.0 n p 50
slightly less well, though the results were still a substantial improvement over the other methods considered.

For the microsatellite data, we used a symmetric stepwise mutation model, with 50 alleles and reflecting bound-
aries, and set

2v p 0.5 # {[1/(1 � H ) ] � 1} ,j j

where is the observed heterozygosity at locus j (see, e.g., Kimmel et al. 1998).Hj

The second problem is that, as in Appendix A above, although, in principle, we can use (2) and (1) to calculate
(up to a normalizing constant) for all possible values of and thus implement step 2 of algorithmPr (H d G,H ) Hi �i i

1, this approach is impractical if the number of possible values of is too large. The trick we used in AppendixHi

A to solve this problem will not work here. Instead, we adjust the Gibbs sampler (algorithm 1) so that, at each
iteration, we update only a subset of the loci of a randomly chosen individual, as follows.

ALGORITHM 3. Start with some initial haplotype reconstruction, . For , obtain from ,(0) (t�1) (t)H t p 0,1,2, … H H
using the following three steps:

1. Choose an individual i uniformly at random from all ambiguous individuals.
2. Select a subset S of ambiguous loci (or sites) in individual i to update. (In the absence of family, or other

experimental data, the ambiguous loci are those for which individual i is heterozygous.) Let denote the haplotypeH(S)
information for individual i at the loci in S, and let denote the complement of , including haplotypeH(�S) H(S)
information on all other individuals (so ). Sample from .(t�1) (t)H(S) ∪ H(�S) p H H (S) Pr [H(S) d G,H (�S)]

3. Set .(t�1) (t)H (�S) p H (�S)

This modification of the algorithm does not affect its stationary distribution, regardless of how the subset S is
chosen. We formed S by choosing five loci uniformly at random from the ambiguous loci in individual i (or all
ambiguous loci if there were fewer than five ambiguous loci in individual i). At each iteration, it is then necessary
to compute for, at most, values of . Note that, for consistent with G,(t) 5Pr [H(S) d G,H (�S)] 2 p 32 H(S) H(S)

(t)Pr [H(S) d G,H (�S)] ∝ Pr (H d H ) ,i �i

and so the necessary probabilities can still be computed, up to a normalizing constant, using (2). From experience,
we have found that updating up to five loci at a time in this way produces reasonable mixing in small problems.
However, the algorithm can have trouble mixing effectively for larger data sets, and choice of starting point can then
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be important. For our simulations, we used a short preliminary run of algorithm 2 (which updates all loci simultaneously
in the chosen individual), from a random starting point, to provide a “good” starting point for algorithm 3.

Finally, we summarize the information in the posterior distribution for H by a point estimate for H, and a matrix
Q representing an estimate of the probability that each phase call is incorrect. We do this by specifying a loss
function , which gives the loss for reporting the estimates when the true haplotypes are H,SSD SSDˆ ˆL(H ,Q; H) (H ,Q)
and attempting to minimize the posterior expected loss by means of methods analogous to those in Stephens (2000).
The particular loss function we used was

SSDˆL(H ,Q; H) p � max log (q ) � log (1 � q ), log (q ) � log (1 � q ) ,� � � �ij ij ij ij{ }
(i,j)�C (i,j)�C (i,j)�C (i,j)�C

where if the phase call in for individual i at locus j is correct. There are other good summaries,SSDˆ(i,j) � C H
corresponding to other sensible loss functions, for which the results in this study are similar.
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